
agronomy

Article

A Simple Light-Use-Efficiency Model to Estimate
Wheat Yield in the Semi-Arid Areas

Saïd Khabba 1,2,* , Salah Er-Raki 2,3 , Jihad Toumi 1, Jamal Ezzahar 2,4 ,

Bouchra Ait Hssaine 2, Michel Le Page 5 and Abdelghani Chehbouni 2,5

1 LMFE, Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000,

Morocco; jihadtoumi@gmail.com
2 Mohammed VI Polytechnic University (UM6P), Center for Remote Sensing Applications (CRSA),

Benguerir 43150, Morocco; s.erraki@uca.ma (S.E.-R.); j.ezzahar@uca.ma (J.E.);

Bouchra.AITHSSAINE@um6p.ma (B.A.H.); ghani.chehbouni@ird.fr (A.C.)
3 ProcEDE, Applied Physics Department, Faculty of Sciences and Techniques, Cadi Ayyad University,

Marrakech 40000, Morocco
4 MISCOM, National School of Applied Sciences (ENSA), Cadi Ayyad University, Safi 46000, Morocco
5 Centre for Space Studies of the BIOsphere (CESBIO), CNES/CNRS/IRD/UPS, 31400 Toulouse, France;

Michel.Le_page@ird.fr

* Correspondence: khabba@uca.ma; Tel.: +212-524431626

Received: 11 August 2020; Accepted: 30 September 2020; Published: 7 October 2020
����������
�������

Abstract: In this study, a simple model, based on a light-use-efficiency model, was developed

in order to estimate growth and yield of the irrigated winter wheat under semi-arid conditions.

The originality of the proposed method consists in (1) the modifying of the expression of the conversion

coefficient (εconv) by integrating an appropriate stress threshold (ksconv) for triggering irrigation, (2) the

substitution of the product of the two maximum coefficients of interception (εimax) and conversion

(εconv_max) by a single parameter εmax, (3) the modeling of εmax as a function of the Cumulative

Growing Degree Days (CGDD) since sowing date, and (4) the dynamic expression of the harvest

index (HI) as a function of the CGDD and the final harvest index (HI0) depending on the maximum

value of the Normalized Difference Vegetation Index (NDVI). The calibration and validation of the

proposed model were performed based on the observations of wheat dry matter (DM) and grain yield

(GY) which were collected on the R3 irrigated district of the Haouz plain (center of Morocco), during

three agricultural seasons. Further, the outputs of the simple model were also evaluated against

the AquaCrop model estimates. The model calibration allowed the parameterization of εmax in four

periods according to the wheat phenological stages. By contrast, a linear evolution was sufficient

to represent the relationship between HI and CGDD. For the model validation, the obtained results

showed a good agreement between the estimated and observed values with a Root Mean Square

Error (RMSE) of about 1.07 and 0.57 t/ha for DM and GY, respectively. These correspond to a relative

RMSE of about 19% for DM and 20% for GY. Likewise, although of its simplicity, the accuracy of the

proposed model seems to be comparable to that of the AquaCrop model. For GY, R2, and RMSE

values were respectively 0.71 and 0.44 t/ha for the developed approach and 0.88 and 0.37 t/ha for

AquaCrop. Thus, the proposed simple light-use-efficiency model can be considered as a useful tool to

correctly reproduce DM and GY values.
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1. Introduction

In the southern Mediterranean area, drought is increasing in frequency and intensity [1]. Associated

with global climate change, this trend will likely be more evident in the future [2]. Drought damage to

the agricultural sector affects both rural livelihoods and the national economy as a whole.

Morocco is an arid and semi-arid regions where water resources are very limited [3,4], and

characterized by a high sensitivity to climatic conditions [5]. In this region, cereals are the dominant

crop at the national scale [6]. With a high evaporative demand (about 1600 mm/year), frequent

irrigation is crucially needed to reach potential growth and yield [7]. Indeed, about 85% of total annual

water consumption is used for agriculture irrigation in the region [4]. In this context, accurate and

real-time estimation of crop yield at different scales (e.g., local, regional, or national) is becoming

increasingly important [8]. Additionally, rapid and precise acquisition of field information (e.g., land

use, water status, and crop phenological stages) and crop production is important for formulating

agricultural development planning and agricultural policy [9]. More specifically, to preserve water

resources, the rational management of irrigation water is necessary [10,11].

Modelling can be a useful tool to assess and develop promising irrigation scheduling strategies

under limited available water for increasing crop water productivity [12]. The challenge is to link

meteorological conditions, soil properties, and field management controlling crop production, in order

to better describe the processes leading to crop biomass and yield. In this context, crop modeling

is an effective way to simulate the mechanisms and semi-empirical procedures associated to crop

growth [13–15]. Many process-based crop models have been developed [16], such as AquaCrop [17],

STICS [18], DSSAT [19], APSIM [20], SUCROS87 [21], WOFOST [22], and CERES [23]. Nevertheless,

a common challenge for using these models is the necessity of knowing several input parameters

describing the agro-environmental conditions, which are not always available. The diversities of wheat

cultivars, water and fertilizer management, pests and diseases control, and field application (e.g.,

mulching) in most farmlands have greatly limited the application of such crop models at local and

large-scale regions [13,14,24]. Thus, these models are used principally by scientists or engineers for

academic research and cannot be used on a daily basis by actual field managers [25,26]. To address this

issue, two types of models have been used. The first are the empirical models linking a vegetation

index observed by remote sensing (like Normalised Difference Vegetation Index, NDVI), at a given

time, to the final biomass and grain yield [27–31]. This kind of relationship is simple to develop but

remains very sensitive to agro-environmental conditions and varies from one agricultural season to the

other [29]. In addition, this approach integrates the effects of all types of stress into the vegetation index,

which limits its use to drive the crop management and/or to interpret the crop yields [30,32]. The second

alternative, which is based on light-use-efficiency [33], provides great potential for plant biomass

estimation. This approach was implemented in several models such as CASA [24], LINTUL [34],

and GLO-PEM [35]. In these models, biomass accumulation is transformed from the effective radiation

intercepted by the crop canopy. Most of these models were widely used to estimate net primary

productivity on either grassland or forest by using remote sensing data [36–38], but not as much for

crops, because of less interpretation of processes of crop growth and field management [32]. Then, these

models need to couple the light-use-efficiency theory with biomass partitioning [39], to simulate growth

process and estimate yield for herbaceous crops. In real conditions, the climatic and soil conditions can

modify the temporal evolution of the conversion efficiency [32]. Any stress having an influence on the

stomata opening leads to a decrease in crop transpiration, thus a decrease in photosynthetic activity

which results to a reduction in the conversion efficiency [32]. The most important external factors that

can cause this closure of the stomata are water content, nitrogen content, and temperature.

This study proposes an enhancement of the Monteith light-use-efficiency model [33], to estimate

wheat production in semi-arid areas. More specifically, stress factors introduced by the shortage

of water and temperature will be expressed in a conversion coefficient of light intercepted to the

biomass. The manuscript is organized as follows: Section 2 provides a description of the study area,

in-situ measurements and satellite imagery, and the proposed approach to estimate wheat production.
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Section 3 presents the results and discussions about model calibration and validation. Finally, Section 4

highlights the main conclusions and suggests some perspectives.

2. Materials and Methods

2.1. In Situ and Satellite Data

2.1.1. Study Area

The experiments were carried out in the R3 irrigated district located 40 km east of Marrakech

city (Figure 1) during three growing seasons of winter wheat (2002–2003, 2008–2009, and 2012–2013).

R3 is an irrigated area of about 2800 ha. The dominant crops are cereals, more wheat than barley [40].

Flood irrigation is widely practiced by the majority farmers in this area. The wheat is generally sown

between mid-November and mid-January, depending on climatic conditions and the start of the rainfall

season. The climate of this region is semi-arid, typically South-Mediterranean with high temperature

in summer (38 ◦C, in July) and mild temperature in winter (5 ◦C, in February) with significant daily

and monthly differences [41]. The average annual precipitation is about 250 mm, whereas the potential

evapotranspiration (ET0) is about 1600 mm/year [41].

 

Figure 1. Location of the study site (R3). The calibration fields (C1 to C4) and validation fields (V1 to

V6) are also presented.

The R3 district is practically flat. The total area is divided into different blocks, themselves

separated into six rectangular plots with an area ranging from 3.5 to 5 ha. The irrigation in this area is

managed jointly by three farmer associations in collaboration with the local center of the Regional

Office of Agricultural Development of Haouz (ORMVAH). They play a key role on irrigation rounds

management and on preparation of the irrigation scheduling according to sowing dates and the

availability of water in the dam. At the beginning of agricultural season, a global amount of water

is assigned to the irrigation sector. Managers and users decide the number of irrigations rounds

and quantities assigned for the irrigation. At each round, the farmers receive an amount of water

according to the owned area, without taking into account the type of crops and their water requirements.

Additionally, ground water may be used for irrigation in limited cases, with priority for orchards,

forages (alfalfa), and vegetables, but can also be used for cereal in case of high shortage of dam water.

This complexity is compounded by the spatial heterogeneity of the sowing dates, the size of tilled
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plots, and the quantity of nitrogen used [42]. The result is a high spatial and temporal heterogeneity of

irrigation water requirement that is not considered in water attribution.

2.1.2. Field Data

The meteorological data has been controlled by an automatic weather station installed near

the study area. This station was equipped with instruments to measure global solar radiation (Rg),

wind speed, precipitation, air temperature (Ta), and relative humidity.

For monitoring vegetation growth, measurements of dry matter (DM) and grain yield (GY) were

performed on ten fields of wheat, during the 2002/2003, 2008/2009, and 2012/2013 growing seasons

(Table 1). For more details about these experiments see Belaqziz et al. [30], Duchemin et al. [41], and Le

Page et al. [43]. Along each season, vegetation samples were cut at ground level within squares of

0.5 × 0.5 m. On each sampling date, five samples were chosen randomly within each field for spatial

representativeness issues. The fresh biomass was first weighed in the field by using a portable electric

balance. Next, the various samples were placed in an oven at 85 ◦C for 72 h. Afterward, dry biomass

was weighed again to determine the DM. The GY was also weighted at the start of the grain filling.

Table 1. Final dry matter (DM) and grain yield (GY) obtained for calibration (C1 to C4) and validation

(V1 to V6) fields, conducted during 2002/2003, 2008/2009, and 2012/2013 wheat seasons.

Year 2002/2003 2008/2009 2012/2013

Field C1 C2 V1 V2 C3 V3 V4 V5 C4 V6

DM (t/ha) 5.89 3.75 1.67 4.79 5.95 4.91 5.81 4.67 7.90 8.04
GY (t/ha) 2.87 1.98 0.9 2.51 2.81 2.44 2.96 2.44 4.15 4.42

The fields named Ci (i = 1 to 4) were used for model calibration (Equations (12)–(15)). These

fields were selected for their representativeness of the growth conditions for the three studied seasons

(Table 1). However, the fields Vi (i = 1 to 6) were used for model validation (see, Section 2.2.3).

Additionally, for additional validation of the model against AquaCrop model estimates, we used the

data (climate, irrigation, and nutrient), relating to 112 wheat fields conducted in the study site (R3)

during the 2008–2009 season, to run the two models [30].

2.1.3. Satellite Data

In this study, a set of surface reflectance images in the infrared (0.73–1.11µm) and red (0.58–0.68µm)

bands have been used to determine the Normalized Difference Vegetation Index (NDVI) and the

vegetation fraction cover, with high spatial resolution (10 to 30 m), for three agricultural seasons

(Table 2). For those images, a radiometric calibration and atmospheric corrections were made based

on the reflectance of invariant objects (bare soil, fallow, and houses) and were then transformed into

NDVI maps.

- For the 2002/2003 agricultural season, 10 images acquired by Landsat 7 Enhanced Thematic

Mapper Plus (ETM+), SPOT4-HRVIR and SPOT5-HRG were exploited.

- For the 2008–2009 agricultural season, 16 images from Landsat 5 Thematic Mapper (TM) sensor

were collected [30]. Atmospheric correction was performed by the SMAC correction algorithm [44]

using the aerosol optical depth measured at the Saada station near Marrakech city [45].

- During the 2012/2013 agricultural season, 18 images obtained from the SPOT4and Landsat 8

Operational Land Imager (OLI) sensors were used. These images were acquired during 5 months

between 31 January and 15 June 2013 [43]. Radiometric correction was performed by the

Multi-Sensor Atmospheric Correction Software–Prototype [45,46].
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Table 2. Satellite images used to calculate wheat production during the 2002/2003, 2008/2009, and

2012/2013 agricultural seasons.

Year Satellite Images Images Number Resolution (m2)

2002/2003
Landsat-TM7 5 30

SPOT4 3 20
SPOT5 2 10

2008/2009 Landsat-TM5 16 30

2012/2013
SPOT4 13 10

Landsat8 5 30

For both SPOT and Landsat satellite images, the geometric correction was performed using the

Ground Control Points collected during the experiment [40], followed by the radiometric correction

which was achieved in three steps. Firstly, we corrected a “reference” image from atmospheric effects

using the SMAC correction algorithm and standard values of atmospheric components. Secondly,

the radiometry of each image was homogenized against this reference image thanks to a set of reliable

invariant features. This normalization was performed by applying linear relationships, between

the digital numbers of raw images and the reflectance values of the reference image [40]. Thirdly,

an additional linear correction has been applied between the satellite NDVI values and the NDVI ground

measurements collected using the hand-held Cropscan Multispectral Radiometer. This inter-calibration

ensures a maximal agreement between satellite and in situ NDVI values.

2.2. Proposed Model

The proposed approach is based on the light-use-efficiency model developed by Monteith which

uses the three efficiencies method as a basis [33,47]. This model exploits an energy approach relating

the production of dry matter to the amount of solar radiation received by the plant, assuming that the

accumulation of dry matter is proportional to the accumulation of photosynthetically active radiation

(PAR) absorbed by the plant.

2.2.1. Dry Matter

The light-use-efficiency model is an agro-meteorological crop model, which is used to estimate

the dry matter by introducing the radiation intercepted by the crop during a growing period.

A semi-empirical equation based on three efficiencies is then used to calculate the daily production of

dry matter as follows:

∆DM = εs × εi × εconv ×Rg × ∆t (1)

with ∆DM (g m−2) is the dry matter produced during a period ∆t. εs, εi and εconv represent the climatic

efficiency, the light interception efficiency and the conversion efficiency of the radiation absorbed by

the vegetation into biomass (g MJ−1), respectively. Rg is the cumulative daily value of incident global

radiation (MJ m−2) received by a horizontal plane above the vegetation.

- Climatic efficiency, εs

εs is the ratio between PAR and Rg. PAR is the spectral band of solar radiation between 380 nm and

710 nm [48]. The value of εs varies between 0.42 (for direct radiation) and 0.65 (for diffuse radiation)

with an average of 0.5 [49]. Additionally, Monteith [33] used the value of 0.5 as an average of εs for

tropical and temperate regions. In the same range, Varlet-Grancher et al. [50], obtained an average

value of εs equal to 0.48 for the Mediterranean climate. They also demonstrated that εs varies slightly

depending on the solar elevation, cloud cover, and site latitude. In this study the value εs = 0.48

was used.

- Interception efficiency, εi



Agronomy 2020, 10, 1524 6 of 23

εi is defined as the ratio between the PAR intercepted by the canopy (PARc) and the downward

PAR (PARi). εi varies between 0 in the absence of green vegetation, and 0.95 for highly developed

vegetation with full photosynthetic activity [51]. The calculation of this parameter depends essentially

on the vegetation index, such as NDVI [52]. Often εi is linked to NDVI by a linear relationship [53].

In this study we used:

εi = εimax
NDVI−NDVImin

NDVImax − NDVImin
= εimax × NDVIn (2)

NDVImin and NDVImax are the minimum and maximum NDVI values observed during the

wheat season in the study site. They correspond to the bare soil (NDVImin = 0.14) and the totally

covering vegetation for the entire time series of remote sensing data (NDVImax = 0.92), respectively [41].

NDVIn = NDVI−NDVImin
NDVImax− NDVImin

is the normalized NDVI, and εimax is the maximum interception efficiency

corresponding to the value of εi when NDVI=NDVImax. εimax is then considered as a local characteristic

of wheat growth. It depends on the canopy high, leaf area density, and the plant geometry at full

development stage [54,55]. These canopy characteristics affect the scattering radiation within the

canopy which is not measured by NDVI. Then, the coefficient εimax is considered as an empirical

constant that must be determined under local conditions of wheat growth.

- Conversion efficiency, εconv

εconv (g MJ−1) characterizes the ability of a canopy to convert intercepted radiation into biomass.

Indeed, εconv is defined as the ratio between the quantity of dry matter (DM) produced during a

given period ∆t and the PARc absorbed during the same period. This efficiency can be obtained

experimentally, however there are great variations between studies [56]. Gosse et al. [57], recommended

average εconv values of 1.93 g MJ−1 and 2.51 g MJ−1 for C3 and C4 crops, respectively. However,

εconv can reach around 3.5 g MJ−1 in optimal conditions. For wheat crops, the values of εconv are

set between 1.80 and 2.40 g MJ−1 [58], 1.47–1.74 g MJ−1 [59], 1.2 g MJ−1 [60], 2 g MJ−1 [61], and

1.9 g MJ−1 [62]. In addition, εconv declines under extreme agro-environmental conditions (water,

nitrogen, temperature, and salinity stresses) [32,59].

The following equation is proposed to estimate εconv:

εconv(t) = εconvmax(t) × Ksconv × KT (3)

with εconvmax(t) is the maximum conversion efficiency (g MJ−1), depending on the agro-environmental

conditions, variety, and crop phenological stages [32,57,63–65]. Ksconv is the water stress coefficient that

affects vegetative production [42,66]. KT is the temperature stress coefficient.

• Water stress coefficient Ksconv

To estimate Ksconv , a simple formulation based on the results of Toumi et al. [66], reinforced by

Hadria et al. [42], and Jackson et al. [67], has been proposed. These studies demonstrated that the

effect of water stress coefficient Ks (defined by the FAO as the ratio between actual and maximal

evapotranspirations) on yield production remains insignificant (less than 4%) when its value is situated

between 0.7 and 1. Furthermore, keeping Ks above 0.7 requires a significant increase in irrigation

water [42,66]. In order to minimize the wasting of irrigation water so as not to affect the yield,

we proposed the following formulation for Ksconv estimating:

{

Ksconv = 1 for Ks ≥ 0.7

Ksconv = Ks
0.7 for Ks ≤ 0.7

(4)
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The water stress coefficient Ks depends on the soil water availability. It is calculated from the

water balance in the root zone following exactly the FAO-56 model detailed by Allen et al. [68]:

Ks =
TAW −Dr

TAW −RAW
=

TAW −Dr

(1− p) × TAW
(5)

Dr is the depletion of water in the root zone (mm) calculated by using daily rainfall (P) and

irrigation (I). TAW is the total available water in the root zone (mm). RAW is the readily available water

used by the plant (mm). Equation (5) is valid if Dr > RAW. When Dr < RAW, Ks is equal to 1. TAW and

RAW are calculated as a function of the soil moistures at field capacity (θ f c) and at wilting point (θwp).

TAW = 1000 ×
(

θ f c − θwp

)

× Zr (6)

RAW = p × TAW (7)

where Zr is the thickness of the root zone (mm) and p is a crop parameter which depends on

the evapotranspiration under standard conditions (ETc). For winter wheat and most cereals,

the recommended value is p = 0.55 when ETc is around 5 mm/day (FAO-56, Table 2). When ETc differs

to 5 mm/day, p can be adjusted using the following approximation:

p = 0.55 + 0.04× (5 − ETc) (8)

ETc is estimated from the NDVI by using the relationship developed by Duchemin et al. [41],

for wheat crop grown in the studied site (R3).

• Temperature stress coefficient KT

The thermal stress factor KT measures the restrictive effect of temperature on the conversion of

intercepted solar radiation into plant biomass. Indeed, the low and high air temperatures, compared

to the optimal temperature for growth and yield, decrease the rate of phytomass production [69].

The effect of temperature on the rate of production of phytomass is taken into account. For that reason,

the daily average of air temperature (Ta) is integrated to an equation based on the optimal temperature

(Topt) (necessary for the plants growth) as well as on the two extreme values Tmin and Tmax (below and

beyond which plant growth is assumed insignificant) as follows [69]:



































KT = 1−
(

Topt−Ta

Topt−Tmin

)3

for Tmin < Ta < Topt

KT = 1−
(

Topt−Ta

Topt−Tmax

)3

for Topt < Ta < Tmax

KT = 0 f or Ta < Tmin and Ta > Tmax

(9)

The values of Tmin, Topt and Tmax used in this study were 5, 26, and 33 ◦C, respectively [42,66].

Following the above development, the Equation (1) of dry matter becomes:

∆DM = 0.48 × (εimax × εconvmax(t)) × Ksconv × KT × NDVIn × Rg × ∆t (10)

Finally, in order to reduce the number of unknown parameters, we replaced the product

(εimax.εconvmax(t)) by a single parameter εmax(t). Then, Equation (10) is rewritten as:

∆DM = 0.48 × εmax(t) × Ksconv × Kt × NDVIn ×Rg × ∆t (11)

In conclusion, ∆DM is expressed by using a single parameter (εmax), three indices

(Ksconv , KT and NDVI) and one meteorological variable (Rg). εconvmax(t) can then integrate the effects

of nitrogen stress, the carbon assimilation rate of the leaves (which depends on the phenological stages)

and the possible interactions between these two factors and water and temperatures stresses.
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From the appearance of the ears, the simple calculation of the dry matter dynamic remains

insufficient to monitor the grain filling. The latter is controlled by the process of partitioning the

produced DM between grains and straw. The Harvest Index (HI) evaluates this partitioning [70].

2.2.2. Harvest Index, HI

HI is the ratio between the grain’s weight and the total dry matter produced at the time t. In this

study, the dynamic of HI is modeled in two periods:

- Linear increase of HI which begins at flowering (time tstart, after sowing date) and ends when

HI reaches its final value HI0 (time tend). This type of correlation has been used by other

studies [71–73]. Thus, HI is modeled by the following equation:

HI =
HI0

(tend − tstart)
× (t− tstart) (12)

- Constant value of HI (HI = HI0).

tstart and tend and HI0 are local parameters, which will be derived from the field measurements.

The advantage of this approach lies in its simplicity which intrinsically combines: (i) The storage

of a part of DM assimilation in the ear, and (ii) avoid the requirement of the number and weight

of the grain/ear to predict the grain yield [23,74–76]. In fact, HI integrates the effect of water stress

over different periods of the crop development phases. This has been confirmed for different types of

crops by several studies carried out on cereals in Africa [77–79], in North America [80], in Europe [81],

and globally [82].

For the determination of the final harvest index HI0, we were inspired by the work carried out by

Jianqiang et al. [28], Becker-Reshef et al. [29], and Belaqziz et al. [30], who implemented operational

methods for forecasting grain yields based on NDVI data. HI0 is calculated as follows:

HI0 = HI0max − ∆HI0 ×

(

NDVImaxmax −NDVImax

NDVImaxmax −NDVImaxmin

)

(13)

where HI0max is the maximum value of HI0 observed in the study area and ∆HI0 its variation range.

NDVImaxmax and NDVImaxmin
are the maximum and the minimum values of the NDVImax over the study

area, respectively. Then following this formulation (Equation (13)), HI0 varies from (HI0max −∆HI0) to

HI0max, depending on the values of NDVImax.

Finally, the grain yield GY, at the time t, is deduced by:

GY(t) = DM(t) × HI(t) (14)

where DM(t) is the sum of ∆DM values from plant emergence until the time t.

As a summary, the Table 3 groups together the various parameters of the presented simple model.
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Table 3. List of the parameters of the proposed model.

Notation Description Unit Value

Inputs NDVI
Normalized Difference

Vegetation Index
- -

Rg Incoming solar radiation MJ/m2 -
Ta Daily average air temperature ◦C -
P Rainfall mm -
I Irrigation mm -

Constants Tmin, Topt, Tmax Temperature for growth ◦C 5, 26, 33
NDVImax Maximum value of NDVI - 0.92
NDVImin Minimum value of NDVI - 0.14

εi Climatic efficiency - 0.48

θfc Soil moisture at field capacity m3/m3 0.32

θwp Soil moisture at wilting point m3/m3 0.17
HI0 Final harvest index - 0.50 *

HI0max Maximum value of HI0 - 0.59 *
∆HI0 Variation range of HI0 - 0.15 *

Outputs DM Aboveground dry matter t/ha -
GY Grain yield t/ha -

* Calibrated, see Section 3.2.

2.2.3. Model Calibration and Validation

The model calibration was performed in two stages:

- Inverting the Equation (11) to determine the local values of the parameter εmax as follows:

εmax(t) =
∆DM

0.48 × Ksconv × KT × NDVIn × Rg × ∆t
(15)

Initially the values of εmax will be calculated by Equation (15) fed by the observed data of the

evolution of DM, Rg, and NDVI for the fields named Ci (i = 1 to 4, Table 1). In the second step,

εmax is correlated to the cumulative growing degree days (CGDD) calculated from the sowing date.

The CGDD values were daily calculated by subtracting the wheat base temperature (Tmin) from the

daily average of air temperature (Ta) [76]:

CGDD =
∑

(Ta − Tmin) (16)

For analyzing the obtained relationship εmax(CGDD), the Brower phenological scale is used.

This scale, described in detail by Laguette et al. [56], presents a finer agronomic description of the cereal

development cycle. It allows classifying visible phenological stages in 21 steps easy to interpret: from 1

to 5 for the vegetative phase, from 6 to 17 for reproduction period, and from 18 to 21 for grain ripening.

- Adjustment of Equation (12), by using data for the fields Ci (i = 1 to 4), to determine the local

values of tstart, tend, and HI0.

After, the calibrated model is validated by using the observed data collected for six fields Vi (i = 1

to 6, Table 1), especially the temporal evolution of biomass and grain weight. In addition, further

validation has been done through the comparison with the final biomass and grain yield calculated by

AquaCrop model [17,83], previously calibrated for the study area [66]. For that purpose, the concerned

fields are Vi (i = 1 to 6) and the 112 fields mentioned in Section 2.1.2.
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2.2.4. Model Evaluation Metrics

The estimated DM and GY by the proposed model were compared to the observed values and

those estimated by AquaCrop model using the determination coefficient (R2) of the regression line and

the Root Mean Square Error (RMSE):

R2 =

(

∑n
i=1

(

Yi − Y
) (

Xi − X
))2

[

∑n
i=1

(

Yi − Y
)2

][

∑n
i=1

(

Xi − X
)2

] (17)

RMSE =

√

√

1

n

n
∑

i=1

(Yi −Xi)
2 (18)

where Yi is the predicted value by the proposed model, Xi is the observed value or that estimated

by AquaCrop model, Y is the mean of Yi values, X is the mean of Xi values, and n is the number

of observation.

Additionally, the performance of proposed model was compared to AquaCrop model by using the

statistics of linear models presented in Coursol (1983) [84], which evaluate the statistical significance of

the similarity between two regression lines (see Appendix A).

3. Results and Discussion

3.1. Calibration of εmax

As mentioned above, the calibration of εmax consists of modeling its temporal dynamic as a function

of CGDD. This evolution of εmax is attributed to the seasonal change of conversion efficiency [32,63].

Indeed, Equation (15) is used to calculate the decadal values of εmax by using data (Rg, Ta, NDVI,

DM) observed over four fields of wheat (C1–C4, Table 1). The obtained results, presented in Figure 2,

show that four stages can be distinguished in the evolution of εmax(CGDD):

 

௠௔௫ߝ ε୫ୟ୶ε୫ୟ୶ ε୫ୟ୶ε୫ୟ୶(CGDD)ε୫ୟ୶ ε୫ୟ୶ −

ε୫ୟ୶ −

ε୫ୟ୶

ε୫ୟ୶ε୫ୟ୶

 

 

Figure 2. Calibration of εmax by using data of calibrated fields (Ci, Table 1). The stars represent the

calculated values of εmax (Equation (15)) and the solid black lines are their linear regressions. The green

dotted line shows phenologic development along the Brower scale shown on the right y-axis. t1–t4

indicate cumulative growing degree days (CGDD) at the growth stages t1 = 230, t2 = 260, t3 = 1186,

and t4 = 1500 ◦C-day.
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Stage 1: εmax is practically zero, from emergence to thermal time t1,

Stage 2: Rapid increase in εmax to its maximum value 1.15 g MJ−1. This stage occurs between

times t1 and t2,

Stage 3: εmax remains practically constant at its maximum value 1.15 g MJ−1 (the average value

between t2 and t3),

Stage 4: Almost linear decrease of εmax, from its maximum value (in t3) to a low value (in t4).

As mentioned above, to determine the meaning of articulation times (t1–t4), we used the Brower

scale of wheat development. Thus:

■ t1 = 230 ◦C-day: This time corresponds to the stage 2 of the Brower scale. This shows that t1

coincides perfectly with the start of tillering. This result is reinforced by Hadria et al. [42], who

obtained tillering at a CGDD equivalent to 260 ◦C-day. This work was calibrated and validated

by the STICS model on wheat crops over our study area R3.

■ t2 = 620 ◦C-day: Is the thermal time corresponding to the start of the plateau phase. This time

coincides with the stage 4 of the Brower scale wich corresponds to the end of tillering and the

start of upstream stages. This time is characterized by the transition from leaf production to that

of spikelets [85]. The obtained t2 value is slightly lower than the CGDD = 696 ◦C-day estimated

by Toumi et al. [66], for the start of the maximum of cover fraction.

■ t3 = 1186 ◦ C-day: Is the time of the end of the plateau phase which corresponds to the time

between stages 16 and 17 of the Brower scale. It coincides with the end of flowering and the

beginning of maturity of the wheat crop.

■ t4 = 1500 ◦C-day: Corresponds to the end of maturity of the wheat. This time coincides well with

the CGDD at wheat maturity (1462 ◦C-day) obtained by Toumi et al. [66].

According to this description, we note that phase 1 (from emergence to t1) is characterized by

very low values of εmax. Thus, for this period εmax is assumed to be zero. Additionally, for phase 3 we

have assigned to εmax the average of the values calculated between t2 and t3. However, for the two

phases 2 and 4, the equations of εmax were derived based on the linear regression. The corresponding

coefficients of determination (R2) are 0.96 (n = 15) and 0.91 (n = 7) for phases 2 and 4, respectively.

Thus, according to the results of this calibration, εmax is parameterized as follow:

εmax =































0

0.003 × CGDD− 0.68

1.15

−0.0028 × CGDD + 4.3

for

for

for

for

CGDD ≤ 230
◦

C

230
◦

C− day < CGDD ≤ 620
◦

C− day

620
◦

C− day < CGDD ≤ 1186
◦

C− day

1186
◦

C− day < CGDD ≤ 1500
◦

C− day

(19)

This expression reflects clearly the impact of the phenological stages on the coefficient εmax. In this

context, Arkebauer et al. [32], and Asrar et al. [63] have shown that the values of εconv vary significantly

with the wheat phenological stages. Generally, the values of εi and εconv are low during the initial

phase [63]. However, during the growing stage (between t1 and t2) the increase in εmax may be

explained by the gradual increase of the carbon assimilation rate of the leaves required for the canopy

expansion and for DM storage within the leaves fully emerged [17,18]. During the plateau phase (from

t2 to t3), there is no canopy expansion, but the conversion coefficient remains maximum, because of

grain filling which requires a high photosynthetic activity [17,18]. During the last phase (from t3 to t4),

which coincides with the grain maturity stage and progressive senescence of the vegetation, the carbon

assimilation rate of the leaves decreases [17,63]. This can explain the linear decrease in εmax.

Moreover, the conversion coefficient εconv is also affected by vegetation water status. In this

context, Muchow and Davis [86], have shown that εconv is more affected by crop water stress than εi.

Additionally, for cereals, Muchow [87], showed that the plant water status may impact the interception

coefficient (εi) during the first six weeks. After this period, εconv is the most affected. In the same context,

Asrar et al. [63] showed that just after irrigation, in the middle of the wheat season, εconv increased

from 3 to 3.22 g MJ−1.
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3.2. Calibration of HI

Figure 3 shows the evolution of HI as a function of CGDD obtained for the calibration fields Ci

(i = 1 to 4, Table 1). This trend is segmented into two parts. The first one is characterized by a linear

increase between tstart and tend which fits well with the grains filling and maturity stages. The linear

adjustment of Equation (12) led to the values of tstart = 750 ◦C-day and tend = 1313 ◦C-day. For the

second part (after tend), HI keeps constant at its final HI0, reached at the end of the wheat growing

season. Following the data used in this calibration HI0 = 0.50. This value is comparable to those

obtained by other studies on wheat, such as Toumi et al. [66] in Morocco (HI0 = 0.46), Moriondo

et al. [88] in South America (HI0 = 0.48), Jin et al. [89] in the northern plain of China (HI0 = 0.46) and

Hammer and Muchow [90] in northern Europe (HI0 = 0.55).

 

HI(CGDD) = HI଴563  ×  (CGDD − 750)

Δ Δ

Δ

Figure 3. Variation of the harvest index (HI) obtained for the calibration fields Ci (Table 1). The solid

line represents the adjustment of Equation (12).

Consequently, for the study region, the Equation (12) becomes:

HI(CGDD) =
HI0

563
× (CGDD− 750) (20)

The value 563 ◦C-day is the difference between tend and tstart.

Furthermore, HI0 can exhibit significant annual variability [28,29], which essentially results in the

combination of the agro-environmental and climatic effects [6]. Hence the interest of the equation 13,

which calculates HI0 according to its maximum value observed in the study region (HI0max) and its

variation interval ∆HI0. The determination of these two characteristics (HI0max and ∆HI0) is made

by using data from 10 fields monitored during 3 wheat seasons 2002/2003, 2008/2009, and 2012/2013

(Table 1, Figure 4). It can be seen, that the HI0max value observed in the study region is about 0.59 and

the interval ∆HI0 is 0.15. The obtained value of HI0max is in the range (0.51–0.64) reported by Balaghi

et al. [6], observed in other Moroccan regions. This study shows that HI0max depends on the climate,

the sowing date, and the rainfall/irrigation of the agricultural season. These conditions affect the value

of the field’s NDVImax. In our case, depending on the NDVImax value, HI0 of the field can vary from

0.44 (=0.59–0.15) to 0.59.

Finally, for this proposed model, the two relationships εmax (CGDD) and HI(CGDD) (equations 19

and 20, respectively) represent the local agro-environmental characteristics of wheat production. They

implicitly integrate the effects of different factors affecting crop development and yield which were

not considered explicitly in the Equation (11), especially nutrient stress, soil quality, wheat variety,

etc. Thus, these two parameters represent the calibration keys of the proposed method for other sites

having other agro-environmental characteristics.
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Figure 4. Final harvest index (HI0) obtained for 10 fields (Ci and Vi, Table 1) conducted during the

three agricultural seasons 2002/2003, 2008/2009, and 2012/2013.

3.3. Model Validation by Using the Observed Data

Figure 5 displays the comparison between the simulated and the observed dry matter (DM) and

grain yield (GY) during the wheat development, for the six validation fields (Vi), conducted during

the 2002/2003, 2008/2009, and 2012/2013 wheat growing seasons. From this figure, it can be seen that

there is a good agreement between the simulated and observed yields (DM and GY). Indeed, for DM

(Figure 5a, black circles), the values of R2 and the slope of the linear regression line are 0.81 and

0.82, respectively. Additionally, the RMSE value is around 1.18 t/ha, which represents about 17% of

the average value of DM observed. For the evolution of the grain filling (Figure 5b, black circles),

the statistical values of the comparison between simulation and observation results are also satisfying.

The values of R2, the slope, and the RMSE are 0.77, 0.94, and 0.53 t/ha, respectively.

Regarding the final DM and GY yields (Figure 5, red circles), the performance of the proposed

approach is very promising. The RMSE values are 1.07 and 0.54 t/ha for DM and GY, respectively.

These values are acceptable by comparison to the observed average final yields: 5.65 t/ha for DM and

2.70 t/ha for GY. The accuracy of the simple proposed approach is practically similar to the one obtained

by more complex models of crops development and yield. Indeed, for the study area (R3), the STICS

model [75] reproduced the final biomass and grain yields with RMSE equal to 1.35 and 0.87 t/ha [42].

Additionally, using the AquaCrop model, Mkhabela and Bullock [91] estimated the wheat grain yield

for five sites in Western Canada from 2003 to 2006, with an error of about 24%. Similarly, the WOFOST

model estimated the final yield, for six European regions, with an average error of 13 and 19% for the

DM and the GY, respectively [56].

Furthermore, for the field V1 invaded by oats during the 2002–2003 season [41], the observed DM

and GY (indicated by the blue oval marking in Figure 5) are clearly overestimated by the proposed

approach, which simulates the absorbed solar radiation using remotely sensed NDVI. The same result

was underlined by Hadria et al. [42], and Toumi et al. [66], who monitored the wheat yield in the same

study area (R3) by using STICS and AquaCrop models, respectively. Otherwise, for the DM between 1.5

and 5 t/ha, corresponding mainly to the stages before maturity, the model overestimates the observations

with an almost systematic difference of about 1 t/ha (Figure 5a). Fortunately, this overestimation of DM

did not affect the estimations of grain yield (Figure 5b).

Overall, the yield predictions (DM and GY) by the proposed approach are very encouraging for

the six validation fields. The observed differences between observed and simulated production can be

explained by the difference between the calibration and validation fields in terms of soil texture [92] and

the nutrient applied. Currently, the proposed model does not take explicitly into account the nutrient
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stress. The latter is considered implicitly through the calibrated agro-environmental characteristics

εmax (Equation (19)) and HI (Equation (20)) overall for the studied area.

 

ε

 

 

Figure 5. Comparison between: (a) Dry matter and (b) grain yield measured and those simulated

by the proposed approach during the wheat development. The black circles represent the dynamic

production of DM and GY during the wheat development, while the red circles indicate the final values

at the end of the season. These results concern six fields (Vi, Table 1) conducted during 2002/2003,

2008/2009, and 2012/2013 wheat growing seasons. The blue oval marking indicates DM and GY of the

field V1 invaded by oats during the 2002/2003 wheat season.

3.4. Model Evalution against AquaCrop Model

In order to go further in the evaluation of the proposed approach, the estimated DM and GY by

this approach were also compared with the AquaCrop model simulations on six fields Vi (Table 1)

monitored during three wheat seasons (Figure 6). These results showed that, despite its simplicity,

the statistical performance of the proposed approach is close to that of the AquaCrop model, which

is much more complex and very greedy in input parameters [76]. Indeed, for the DM estimations,

the slope, the intercept of the regression line, the determination coefficient (R2) and the RMSE are

respectively 0.72, 0.65 t/ha, 0.8 and 0.67 t/ha for the proposed model and 0.77, 0.47 t/ha, 0.88 and 0.44 t/ha

for AquaCrop. Additionally, for GY estimations, the values of these statistical metrics are respectively

0.84, 0.37 t/ha, 0.71 and 0.37 t/ha for the developed model and 0.88, 0.20 t/ha, 0.93 and 0.26 t/ha for

AquaCrop. According to the statistics of linear models (Appendix A), it is easily deduced that the two

regression lines of AquaCrop and the proposed model are not significantly different p < 0.01) for both

DM and GY.
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Figure 6. Comparison between the final dry matter DM (a) and the grain yield RG (b) observed

and estimated by the AquaCrop and the proposed models. The observed yields concern six fields

(Vi, Table 1) conducted during the 2002/2003, 2008/2009, and 2012/2013 wheat seasons.

Additionally, Figure 7 presents the comparison between the final dry matter (DM) and grain

yield (GY) simulated by the AquaCrop and the proposed models for 112 fields conducted during the

2008/2009 wheat season. The statistical parameters of this comparison are also encouraging; the slope,

the intercept, R2 and RMSE are respectively 0.72, 1.13 t/ha, 0.70 and 0.59 t/ha for DM and 0.71, 0.38 t/ha,

0.72 and 0.24 t/ha for GY. For both models, the slope and R2 values are close to 1 and the intercepts and

RMSEs are statistically small compared to the average values obtained for DM and GY.

The differences obtained between the two model estimates may be due to their schemes used to

represent the effect of water stress on the growth, development, and yield [93,94]. Indeed, the AquaCrop

model describes finely the effects of the plant water status on DM development by using a dynamic

function of water stress taking into account the expansion of the leaves, the stomata closing and

the senescence for the crop [17,76]. Thus, in AquaCrop, under limited water conditions, the plant

transpiration is directly affected. On the other hand, the developed model used a simple relation

(Equation (3)) to monitor the water stress effects on the conversion coefficient εconv. This effect has

been alleviated by the proposal of a new formulation of the stress coefficient (Ks_conv, Equation (4)) to

optimize the irrigation water supply [42,66]. This may explain the overestimation obtained in some

fields, by the proposed approach, of the yields calculated by AquaCrop, especially for DM lower than

3 t/ha (Figure 7a) and GY lower than 1.5 t/ha (Figure 7b).
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Additionally, for AquaCrop, carbon sequestration and nitrogen absorption are mainly linked to

radiation and nitrogen limitations [17,76]. However, for the proposed model, the effect of nitrogen is

incorporated into local εmax calibration (Equation (19)). This correlation represents the integrating

effect of the regional agro-environmental conditions (e.g., soil fertility and salinity) on crop yield.

 

 

 

ɛ

ε

 

Figure 7. Comparison between the final dry matter DM (a) and the grain yield GY (b) estimated by the

AquaCrop and the proposed models for 112 fields conducted during the 2008/2009 wheat season.

4. Conclusions

The main objective of this work was to present a simple and enhanced light-use-efficiency model

for monitoring the wheat crop yield in the semi-arid area. The model links the biomass production

to the solar radiation received by the plant, assuming that the increase of the biomass produced is

proportional to the accumulation of photosynthetically active radiation absorbed. The originality

of the method consists in: (1) The expression of the conversion coefficient (εconv) by considering an

appropriate stress threshold (ksconv) for triggering irrigation, (2) the substitution of the product of the

two maximum coefficients of interception (εimax) and conversion (εconv_max) by a single parameter

εmax, (3) the modeling of εmax as a function of the Cumulative Growing Degree Days (CGDD) since

sowing date, and (4) the dynamic expression of the harvest index (HI) as a function of the CGDD and
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the final harvest index HI0 depending on the maximum values of Normalized Difference Vegetation

Index (NDVI) in the studied area.

The model calibration reflects the impact of the phenological stages and water stress on the εmax

coefficient. Thus, the expression of εmax as a function of CGDD has been segmented into four parts.

However, a linear evolution was sufficient to represent the evolution of HI according to the CGDD up

to its final value (HI0 = 0.50) obtained in 1313 ◦C-day. Thus, the εmax and HI equations are considered

representative of the agro-environmental conditions of the Haouz plain. Therefore, they are considered

the calibrating keys of the proposed approach in other different agro-environmental situations.

The model validation was performed against dry matter (DM) and grain yield (GY) observed

during three wheat growing seasons and calculated by AquaCrop (more complex model). The obtained

results reflect a satisfactory ability of the proposed approach to reproduce DM and GY. The values

of R2 and RMSE are of about 0.81 and 1.18 t/ha and 0.77 and 0.53 t/ha for monitoring the observed

dynamics of DM and GY, respectively. For the final yield, the R2 and RMSE are 0.8 and 1.07 t/ha and

0.81 and 0.57 t/ha for DM and GY, respectively. Against Aquacrop, the performance of the proposed

model is very encouraging. Indeed, for DM, the R2 and RMSE values are respectively 0.8 and 0.67 t/ha

for the proposed model and 0.84 and 0.44 t/ha for AquaCrop. For the GY estimate, the values of these

statistical metrics are respectively 0.71 and 0.37 t/ha for the developed approach and 0.93 and 0.26 t/ha

for AquaCrop.

The integration of satellite data to the proposed model seems to be one of the most appropriate

quantitative analysis methodologies that may be adopted for yield estimation at large spatial scales [95].

Indeed, the recent advent of new satellite sensors with both high spatial (less than 10 m), temporal

resolution (less than 1 week), and multi-bands (optic, thermal, and microwave) as well as the

developed computer processing tools have opened up new perspectives for mapping crop type [95]

and field-level crop productivity [96]. This will allow the daily monitoring of the stress coefficient

and the determination of the irrigations carried out necessary for the establishment of yield maps at

large scales.
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Appendix A

The statistics of linear models described by Coursol [84] evaluate the statistical significance of the

similarity between two regression lines Y1i = a1 Xi + b1 and Y2i = a2 Xi + b2 as follows:

The statistic estimators of the two slopes (a1 and a2) and the two intercepts (b1 and b2) are calculated

as:

â1 =

∑n
i=1

(

Y1i − Y1

) (

Xi − X
)

∑n
i=1

(

Xi − X
) , â2 =

∑n
i=1

(

Y2i − Y2

) (

Xi − X
)

∑n
i=1

(

Xi − X
)

b̂1 = Y1 − b1 X

b̂2 = Y2 − b2 X

https://www.lmi-trema.ma/
https://www.lmi-trema.ma/
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where Yi1 and Yi2 are the predicted values, Xi is the observed value, Y 1 and Y 2 are the predicted

means, X is the measured mean, and n is the number of observation.

Assuming that the couples (â1, b̂1) and (â2, b̂2) are independent, the variance of the estimators is:

S2 =
1

2n− 4















n
∑

i=1

[

(

Y1i − Y1

)2
+

(

Y2i − Y2

)2
]

− (â1 + â2)
n

∑

i=1

(

Xi − X
)2















1. Comparison of the two slopes (a1 and a2): The null hypothesis (often denoted H0) is: a1 = a2.

The observable value of the Fisher-Snedecor distribution (Fobs) is calculated as:

Fobs =

[

(

â1 −
ˆ̂a
)2
+

(

â2 − ˆ̂a
)2

]

∑n
i=1

(

Xi − X
)2

S2

with

ˆ̂a =

∑n
i=1

[(

Y1i − Y1

)

+
(

Y2i − Y2

)] (

Xi − X
)

2
∑n

i=1

(

Xi − X
)2

2. Comparison of the two intercepts (b1 and b2): The null hypothesis (H0) is: b1 = b2. The observable

value of the Fisher-Snedecor distribution (Fobs) is calculated as:

Fobs =

∑n
i=1

[(

Y1i −

(

ˆ̂b− b̂1

)

Xi

)

+
(

Y2i −

(

ˆ̂b− b̂2

)

Xi

)]

(

Xi − X
)2

S2

with

ˆ̂b =

(

Y1 + Y2

)

− (â1 + â2) X

2

Finally, for each comparison (of the two slopes or the two intercepts), the null hypothesis H0 is

accepted if Fobs is less than the theoretical value of the Fisher-Snedecor distribution Fth (1, n − 2) that

exists in tabular form for different values of the accepted error (α). For example, if α = 1%�, 1%, or 5%

the hypothesis H0 is accepted with an accuracy often denoted p < 0.001, p < 0.01 or p < 0.05, respectively.
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