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Abstract
Precipitation is a key component in hydrologic processes. It plays an important role in hydrological modeling and water 
resource management. However, many regions suffer from limited and data scarcity due to the lack of ground-based rain 
gauge networks. The main objective of this study is to evaluate other source of rainfall data such as remote sensing data (three 
different satellite-based precipitation products (CHIRPS, PERSIANN, and GPM) and a reanalysis (ERA5) against ground-
based data, which could provide complementary rainfall information in semiarid catchment of Tunisia (Haffouz catchment), 
for the period between September 2000 and August 2018. These remotely sensed-data are compared for the first time with 
observations in a semiarid catchment in Tunisia.
Twelve rain gauges and two different interpolation methods (inverse distance weight and ordinary kriging) were used to 
compute a set of interpolated precipitation reference fields. The evaluation was performed at daily, monthly, and yearly time 
scales and at different spatial scales, using several statistical metrics. The results showed that the two interpolation methods 
give similar precipitation estimates at the catchment scale. According to the different statistical metrics, CHIRPS showed 
the most satisfactory results followed by PERSIANN which performed well in terms of correlation but overestimated 
precipitations spatially over the catchment. GPM underestimates the precipitation considerably, but it gives a satisfactory 
performance temporally. ERA5 shows a very good performance at daily, monthly, and yearly timescale, but it is unable to 
represent the spatial variability distribution of precipitation for this catchment. This study concluded that satellite-based 
precipitation products or reanalysis data can be useful in semiarid regions and data-scarce catchments, and it may provide 
less costly alternatives for data-poor regions.
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Introduction

Precipitation is a key component in hydrologic processes 
(Jiang et al. 2012; Moges et al. 2022). It plays an important 
role in hydrological modeling, water balance, as well as in 
water resources management, and it provides potential sup-
port for decision-making Sustainable Development in Data-
Poor Regions (Sheffield et al. 2018). Accurate, continuous 
rainfall observations represent an important contribution 
to hydrological research and practical applications (Moges 
et al. 2022). In addition, improved observations, models, 
and data assimilation systems will help to close the scientific 
gaps in the understanding of spatial–temporal variability 
regarding changes in climate variability and extreme events 
(Lahoz and De Lannoy 2014), and they will lead the way to 
improve hydrological predictions (Lettenmaier 2017).
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Precipitation information is generally derived from the 
ground-based rain gauges which are commonly used to 
measure precipitation directly at the Earth’s surface, while 
meteorological radars, and satellite-based estimates precipi-
tation at higher altitudes (Behrangi et al. 2011; Berg et al. 
2016; Kidd 2001).

The progress in satellite technology allowed many coun-
tries to successfully develop a number of climate variable 
observations missions. In fact, precipitation products have 
been available worldwide for over four decades. The diffu-
sion of satellite products recently provided more access to 
diverse climate data than ever before (Levizzani and Cat-
tani 2019; Sun et al. 2018), and a series of satellite-based 
precipitation products produced high-resolution data with 
worldwide coverage (Li et al. 2015; Sun et al. 2018; Zhang 
et al. 2017).

The use of multiple sensors for the estimation and fore-
casting of precipitation indicated promising results recently. 
In this context, (Meydani et al. 2022) developed a weather 
forecast downscaling model for downscaling large-scale 
raw weather forecasts of ECMWF and NCEP to small-scale 
spatial resolutions using deterministic artificial intelligence 
techniques and a Bayesian Belief Network. The downscaled 
precipitation and temperature were fed to a hydrological 
rainfall-runoff model to optimize dam water allocation 
between agricultural and environmental demands in Urmia 
Lake basin in Iran.

In addition, (Brocca et al. 2019) showed that a global 
daily satellite precipitation data work relatively well in 
data-poor regions of the world, such as Africa and South 
America. Several recent studies have focused on the use of 
different precipitation datasets due to data scarcity and lack 
of follow-up in poorly gauged or ungauged catchments such 
as in Blue Nile River sub-basin in the Sudan (Abd Elhamid 
et al. 2020), in the north of Tunisia (Dhib et al. 2017), in 
Taiwan (Hsu et al. 2021), in Australia (Islam et al. 2020), in 
Andalusia in Spain (Moreno et al. 2022), in the Sio-Malaba-
Malakisi river basin of East Africa (Omonge et al. 2022), 
and in the Mainland China (Yu et al. 2022).

Precipitation data are usually available at certain loca-
tions within a catchment. However, it is difficult and expen-
sive to acquire continuous spatial data for most locations, 
especially for mountain and sea areas. Spatial interpolation 
methods represent a good alternative to generate distributed 
and accurate spatial information using available measure-
ments on certain areas (Longo-Minnolo et al. 2022). Spatial 
interpolation techniques are therefore crucial for creating 
continuous area predictions based on sampled point values 
(Wang et al. 2014). To obtain better estimates of spatial pre-
cipitation, (Kumar et al. 2021) showed that gauge-interpo-
lated analysis is recommended for precipitation trend and 
variability analysis. Despite the use of satellite rainfall esti-
mates as a reference dataset, their interpolated estimates are 

rarely compared to interpolated observed rainfall estimates 
(Shi et al. 2022). There are different methods of interpola-
tion, such as ordinary kriging (OK) and inverse distance 
weighting (IDW) (da Silva et al. 2019).

In many regions, arid and semiarid zones are 
characterized by official networks for hydrometric and 
meteorological monitoring (mostly, precipitation and 
discharges) which are not well distributed spatially and 
suffer from data gaps and often from poor-quality databases 
(Fehri et al. 2020). Thus, satellite data, gauge observation, 
and data reanalysis can help to better understand spatial 
characteristics of precipitation particularly in data-scarce 
region (Beck et al. 2017; Ning et al. 2017).

Although the satellite data provide valuable and 
important information for the weather process, drought, and 
hydrological monitoring, it is crucial and prerequisite to test 
their accuracy and performances for a correct use (Maggioni 
et al. 2016).

Several studies in different regions of the world have 
evaluated the performance of satellite products under 
different climatic conditions (Omar et al. 2023; Rachdane 
et al. 2022). In Tunisia, some studies used precipitation 
satellite products for different purposes: for example, for bias 
correction techniques (Dhib et al. 2021); for precipitation 
estimates and monitoring (Dhib et al. 2017); filling the gap 
in rainfall data for hydrological models (Guermazi et al. 
2019; Medhioub et al. 2019); for drought monitoring and 
forecasting using machine learning in arid areas (Bouaziz 
et al. 2021); and as input of ERA5 to compare hydrological 
models performances for flood modeling (Cantoni et al. 
2022). These studies were carried out without considering 
the spatial variability of rainfall within the basins. Given 
the characteristics of semiarid and steep relief regions 
with a high spatial and temporal variability of rainfall, 
the precipitation products may exhibit varying degrees of 
performance. Therefore, a study of the performances of 
these products at a reduced spatial scale (at the catchment 
scale) and in a semiarid climate is highly put forward in 
this paper. In this context, the remote sensing data used 
in the present study are compared for the first time with 
observations in semiarid area in Tunisia.

In this study, we use daily 12 rain gauges in and around 
Haffouz catchment (semiarid catchment in Tunisia), and 
three satellites data products and a reanalysis: (1) CHIRPS 
(Climate Hazards Group Infrared Precipitation with 
Stations (Rivera et al. 2018)), (2) PERSIANN (Precipitation 
Estimation from Remotely Sensed Information using 
Artificial Neural Networks (Eini et al. 2022)), (3) GPM 
(Global Precipitation Measurement (Smith et al. 2007)), and 
(4) ERA5 (Hersbach et al. 2020).

The objective of the present study is to assess 
performances of other source of rainfall data than the 
ground-based data, that do not necessarily represent the 
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rainfall variability, and which could provide complementary 
rainfall information for Haffouz catchment. The specific 
objectives of this study include: (1) the assessment of the 
selected satellite data accuracy in terms of bias and temporal 
correlation using different evaluation metrics and (2) their 
spatial analysis related to the interpolated observed data.

The paper consists of five sections. In Section “Materials 
and methods,” case study specifications including area of 
study, description of datasets are provided. Interpolation 
methods, evaluation metrics, and spatial evaluation are 
described in Section “Methodology.” Section “Results and 
Discussion” outlines the results and discussion of findings. 
Finally, concluding remarks are presented in Section 
“Conclusion.”

Materials and methods

Study area

The Haffouz catchment covers an area of 625   Km2, is 
located in central of Tunisia, and has a semiarid climate 

(Fig. 1). It is a sub-basin of the Merguellil upstream catch-
ment (1200  Km2). It is under two climatic influences: a 
humid trend from the north (Tellien region, mountainous, 
cold, and rainy), and an arid trend from the south (a hot 
pre-desert region) (Chargui et al. 2013; Jebari et al. 2008). 
Climate is also influenced by the effect of latitude and relief 
(Slimani et al. 2007). Thus, the study area is characterized 
by high spatiotemporal variability in precipitation, according 
to a north–south gradient (Chargui et al. 2009), with annual 
values between 200 and 500 mm.

Datasets

Three different resolution satellites precipitation and rea-
nalysis data are used with different grid size as shown in 
Fig. 2 which are CHIRPS, PERSIANN, GPM, and ERA5. 
Rain gauge observations in and around the watershed are 
shown in Fig. 1. Daily time series were used for all datasets. 
However, in this study, the analysis will be interpreted based 
on daily, monthly, and interannual scales.

The PERSIANN family contains three satellite-based 
precipitation products: (1) PERSIANN algorithm is relied 

Fig. 1  Catchment location and rain gauge positions
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on the synergy between sparsely sampled information 
from LEO satellites and high-frequency samples from 
GEO satellites. It computes rainfall rate estimates at each 
0.25° × 0.25° pixel of the infrared brightness temperature 
images. (2) PERSIANN-CCS is an example of a cloud 
patch-based algorithm, using information from infrared 
cloud images that extracts features from cloud cover 
below a certain temperature threshold. (3) PERSIANN-
CDR provides daily rainfall estimates at 0.25° for the 
latitude band 60N-60S over the period of 01/01/1983 to 
12/31/2015 (delayed present). It is aimed at addressing the 
need for a consistent, long-term, high-resolution, and global 
precipitation dataset for studying the changes and trends in 
daily precipitation, especially extreme rainfall events, due to 
climate change and natural variability (Nguyen et al. 2018, 
2019; Sorooshian et al. 2000).

The Global Precipitation Mission (GPM) is a program 
founded by a cooperation between two space agencies, the 
National Aeronautics and Space Administration (NASA) and 
the Japan Aerospace Exploration Agency (JAXA), launched 
in 2014. It is the immediate successor to the Tropical 
Rainfall Measurement Mission (TRMM) program that 
operated the first space-based precipitation radar. It brings 
two core observations, i.e., dual-frequency radar (DPR) and 

multi-channel GPM microwave imager (GMI). The DPR 
operates on two radar frequency bands, i.e., the Ka-band 
precipitation radar with a frequency of 35.5 GHz and the 
Ku-band precipitation radar at a frequency of 13.6 GHz. On 
the other hand, the GMI brings 13 channels of microwave 
signal sensors operating in the range of 10 to 183 GHz. 
The GPM delivers various global precipitation products. It 
does not record only the final synthesis product but also 
the intermediate data that contributed to its development, 
in order to keep track of the various processing procedures 
(Berges 2019; Ramadhan et al. 2022).

CHIRPS (The Climate Hazards Group Infrared 
Precipitation with Stations) is a semi-global rainfall product 
for monitoring drought and global environmental changes. It 
provides data with high spatial (around 5 km) and temporal 
resolutions (daily, pentadal, and monthly precipitation), 
starting from 1981 to near present. CHIRPS integrates 
satellite information in three ways: through satellite assets 
means to generate high-resolution precipitation, CCD fields 
to estimate monthly and pentadal precipitation anomalies, 
and satellite precipitation fields to estimate local distance 
decay functions guiding the interpolation process (Narulita 
et al. 2021). CHIRPS algorithm was used to quantify the 
hydrological effects of reduced precipitation and increased 

Fig. 2  Spatial distribution of satellite products grids on Haffouz catchment
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air temperature in the Greater Horn of Africa (Funk 
et  al. 2015). Further, results showed good correlation 
between CHIRPS values and recorded precipitation over 
Mediterranean region (Katsanos et al. 2016).

ERA5, from the European Centre for Medium-Range 
Weather Forecasts (ECMWF), is the fifth generation of 
reanalysis global atmospheric datasets. It replaces the ERA-
Interim reanalysis and is based on the Integrated Forecasting 
System (IFS). It covers the period from January 1950 to 
present. It provides a lot of variables such as atmospheric, 
land, and oceanic climate variables, with an hourly temporal 
resolution and a 31  km spatial resolution (Hersbach 
et al. 2020). (Lavers et al. 2022) showed that the use of 
precipitations detected and estimated by ERA5 is more 
reliable and recommended for climate monitoring activities 
in extratropical areas. However, the precipitation product 
estimated by ERA5 strongly depends on topography (Jiao 
et al. 2021).

In this study, the daily rainfall data were collected from 
Regional Agricultural Development Commission (CRDA) 
of Kairouan and Siliana for 12 rainfall stations in and 
around the study area, starting the year 2000. The gauges 
are installed at different elevations as given in Table 1.

Methodology

Interpolation methods

Spatial interpolation is the most traditional and known 
method for converting point precipitation to areal pre-
cipitation. Many spatial interpolation methods are tested 
and compared for their performance. The inverse distance 
weighting (IDW) and the ordinary kriging (OK) are the most 
frequently used methods (Li and Heap 2014). In this work, 

we use both interpolation methods (IDW and OK) to esti-
mate precipitation.

Inverse distance weighting (IDW) is a simple way of 
spatial interpolation, where observations are weighted based 
on their distance to a given point by a nonlinear relationship 
expressed by an exponent (typically equal to 2). IDW was 
first proposed by Shepard (1968), and widely used because 
of the simplicity and the applicability to rare and irregular 
datasets (Stisen and Tumbo 2015). The ordinary kriging 
(OK) is a geostatistical method based on statistical models 
involving autocorrelation. This is the most common method 
of kriging and it assumes a second-order stationary for the 
regionalized variable (Shi et al. 2022).

Spatial interpolation of precipitation can sometimes give 
unrealistic estimations due to a poor rain gauge network 
(Hussain et al. 2018; J. Li and Heap 2008; Scheel et al. 
2011). That is why, a validation with the observed data is 
necessary. The validation approach used in this study is 
the “point-to-pixel.” It is used in several research studies 
(Gebere et al. 2015; Jiang et al. 2016; Rachdane et al. 2022).

Further, to assess the efficiency of different satellite-based 
precipitation estimates, a comparison with the observed 
data as ground reference is necessary. The choice of ground 
reference is a very delicate and important step due to the 
spatial distribution of rain gauges which are characterized 
by a sparse network and the presence of missing data in 
the series of observations (Cudennec et al. 2005; Tramblay 
et al. 2016). So, the spatial interpolation of precipitation 
is important and used to generate rain fields in a grid of 
specific size (Teegavarapu et al. 2012) in order to compare 
observed data with satellite products.

Thus, different evaluation metrics are used for satellite-
based precipitation estimates to test their performance using 
observations as a reference. The network of rainfall stations is 
characterized by a poor spatial distribution and a long distance 
between stations on the one hand, and on the other hand, the 
series of observed data suffer from discontinuity at each time 
step, as well as gaps and anomalies. Thus, spatial interpolation 
seems to be a solution to fill these anomalies (Tramblay et al. 
2016). To interpolate, a regular grid of points with a 2 km 
resolution within the catchment has been made. Then, precipi-
tations are interpolated, by the two methods described before, 
and averaged at these points. In addition, the different satellite-
based precipitation estimates data within Haffouz catchment 
are averaged at different time steps (daily, monthly, and yearly).

Evaluation metrics

Several statistical metrics were adopted in order to compare, 
better understand and evaluate the accuracy of the different 
satellite-based precipitation estimates (Table 2). Pearson cor-
relation coefficient (CC) is used to measure the linear correla-
tion between in situ gauge observations and satellite estimates. 

Table 1  List of rain gauges in and around Haffouz catchment

ID Name Latitude Longitude Altitude (m)

1 Tella 35.80660 9.23470 863
2 Makther 35.85040 9.20410 919
3 Kesra Foret 35.82070 9.35782 1050
4 Kesra B9 35.81190 9.36400 956
5 Ain Beidha 35.51620 9.71969 297
6 Ain Jelloula 35.79710 9.81273 175
7 El Ala CTV 35.61070 9.55469 466
8 Ouled Amor 35.66320 9.52997 500
9 Cherichira Ecole 35.63240 9.83357 321
10 Hajeb El Ayoun 35.54230 9.54275 350
11 Haffouz SM 35.61150 9.66719 270
12 Ousseltia Foret 35.84230 9.58635 465
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Relative bias (RBias) describes the systematic biases of satel-
lite-based precipitation estimates data and provides an average 
magnitude and sign of the differences between satellite esti-
mates and in situ gauge observations. Root-mean-squared error 
(RMSE) represents the mean absolute deviation between the 
satellite estimate and the observed value and demonstrates the 
error characteristics of satellite estimates, which are sensitive 
to outliers. Spearman's correlation coefficient or Spearman's ρ 
(rho) is a nonparametric correlation between two variables. 
Spearman correlation is important when two statistical vari-
ables appear to be correlated without the relationship between 
the two variables being of an affine type.

where  Si are the satellite precipitation estimates,  Gi is the 
observed rain gauge precipitation, S and G are the mean, 
n is the number of samples considered, cov(rgS, rgG) is 
the covariance of the rank variables, and �rgS and �rgG are 
the standard deviations of the rank variables.

Spatial evaluation

Spatial evaluation was first done by keeping the spatial reso-
lution of each satellite product and the grid (2 × 2  Km2) used 
in interpolation for observed data. Then, a spatial interpola-
tion for each data was performed by a GIS tool. The mean 
daily pixel values were then extracted and aggregated to 
monthly and then annual sums for each product for the com-
mon period of 2000–2018. This was done to allow a fair com-
parison of the products since they have different spatial and 
temporal extents, but by keeping the same scale of values. 
The products were then mapped over the study area and com-
pared based on mean monthly precipitation performances.

Results and Discussion

Evaluation and validation of interpolation methods

In this study, 12 precipitation gauges were used in the 
interpolation, these gauges were distributed at elevations 
from 252 to 1219 m, for a period from September 2000 to 
August 2018, with no gaps in the rainfall series. To ensure 

consistent comparisons between satellite precipitation and 
rain gauges, two spatial interpolation methods, the inverse 
distance weighting (IDW) and ordinary kriging (OK), were 
applied to estimate the spatial distribution of rainfall data, 
daily, monthly, and yearly, in Haffouz catchment. These 
methods seem to reproduce well the observed precipitation. 
However, it should be noted that the elevation was not con-
sidered. Thus, the application of a method in precipitation 
interpolation incorporating the altitude may give better esti-
mations (Di Piazza et al. 2011). The performance of each 
spatial interpolation method was evaluated using the RMSE, 
RBias, CC, rho ( � ), and R2 statistics to investigate their pre-
diction accuracy.

To clearly and intuitively demonstrate that interpolated 
daily precipitation at the point scale, we compared the 
observed and interpolated daily precipitation from 1st 
September 2000 to 30th August 2018 at three observed 
stations which are Tella, Kesra B9, and Kesra Foret. The 
choice of these stations is due to the fact that they are in the 
same pixels of the grid and nearest to the pixel’s centroid.

Figure 3 displays the values of the RMSE, RBias, CC, 
rho, and R2 for the validation results. The CC was more 
than 0.9 at most stations at daily scale. The rho was higher 
than 0.6 for all stations. The RBias between all observed 
rain gauges with the two interpolation methods is low with 
a maximum value of the order of 0.14 and a margin of over-
estimation or underestimation of ± 1%. In terms of RMSE, 
it is low for the different stations with a maximum value 
of 3.7 mm/day. The two methods of interpolation show the 
same coefficient of determination about 0.9 between the 
interpolated values and the observed values for Tella and 
Kesra B9 stations. The IDW method tends to provide slightly 
better results than OK, except for Kesra foret station located 
at higher altitude.

Figure 4 shows the correlation between ordinary kriging 
interpolation and inverse distance weight for the different 
time steps. It gives a very good correlation between these 
two interpolation methods with a correlation coefficient of 
0.98, 0.99, and 0.95 for the daily, monthly, and yearly time 
scales, respectively.

Table 2  List of the statistical 
metrics used in this study

Statistic metrics Equations Range Perfect value

Pearson correlation coefficient (CC)
CC =

∑n

i=1

�

Gi−G

��

Si−S

�

�

∑n

i=1

�

Gi−G

�2
�

∑n

i=1

�

Si−S

�2

−1 to 1 1

Relative bias (RBias)
RBias =

∑n

i=1(Si−Gi)
∑n

i=1
Gi

× 100%
−∞ to + ∞ 0

Root-mean-squared error (RMSE)
RMSE =

�

∑n

i=1(Si−Gi)
2

n

0 to + ∞ 0

Spearman's correlation coefficient (�) �rgS,rgG =
cov(rgS,rgG)

�rgS�rgG

−1 to 1 1
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Using the “point-to-pixel” approach, the results 
showed a strong correlation between interpolated values 
and observed data for three rain gauges (Kesra B9, Kesra 
foret, and Tella). So, the proposed interpolation method 
reproduced precipitation events well and was sufficiently 
accurate and provided very similar estimates.

Temporal analysis

The four statistical metrics results were used to assess the 
quality of the satellite data against observed data as dis-
played in Fig. 5. For CHIRPS, results showed that RBias 
had values between −0.05 and −0.07, RMSE between 3.9 

Fig. 3  Statistical metrics for result validation
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Fig. 4  Correlation between the 
ordinary kriging and the inverse 
distance weight at a daily,  
b monthly, and c yearly time 
scale
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Fig. 5  Statistical metric 
between interpolated precipita-
tion and satellite-based product 
precipitation a CC,  
b rho, c RBias, and d RMSE
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and 80.23 mm, CC between 0.55 and 0.80, and rho between 
0.38 and 0.82 for the different time steps, daily, monthly, 
and yearly (Fig. 5). The RBias gave minor underestimation 
with a value of approximately −0.07. The two methods of 
interpolation have positive correlation with CHIRPS with 
a CC larger than 0.6 for daily data and 0.8 for monthly and 
yearly time steps (Table 3). This indicates a very important 
correlation. Nonetheless, it should be noted that precipita-
tion is not considered as a linear variable. For this reason, 
the correlation coefficient of Spearman (rho) at daily time 
step presents rather a low correlation with a value of around 
0.39 for both interpolation methods. This value increases 
with the time step to achieve more than 0.8 at the monthly 
time step which is considered a strong correlation. The 
RMSE between CHIRPS and interpolated precipitation is 
around 3.29 mm, 20.5 mm, and 80.23, respectively, for daily, 
monthly, and yearly data (Table 3). Among the three satel-
lite-based precipitation products (CHIRPS, PERSIANN, and 
GPM) and a reanalysis (ERA5), CHIRPS was, globally, the 
best product among the tested products. Indeed, it showed 
a good performance over the Haffouz catchment, especially 
at the monthly time step in terms of correlation coefficient 
(CC and rho) and RBias.

The GPM results presented CC values between 0.36 
and 0.43, rho coefficients between 0.48 and 0.6, RBias 
around −0.5, and RMSE between 3.62 and 219 mm for 
daily, monthly, and yearly data. GPM data showed a large 
underestimation with RBias equal to −50% for each time 

steps (Table 3). The correlation between the GPM product 
and the observed data interpolated with the two methods 
of interpolations is low with a maximum correlation at 
daily time step equal to 0.43. However, the Spearman’s 
coefficient shows a rather good correlation between GPM 
data and observed data with a rho coefficient larger than 
0.59. RMSE results are comparable to CHIRPS for daily 
data and are slightly larger than CHIRPS for monthly anal-
ysis with a difference of around 10 mm/month. For yearly 
time steps, RMSE is double those for CHIRPS products 
(219 mm/year). In this study, the GPM product is not sat-
isfactory for reproducing temporal rainfall patterns. How-
ever, several studies noted that its performance depends on 
several factors such as topography, semiarid climate and 
rainfall regime, rain gauge density, and the quality of the 
observed data (Chen et al. 2019; Chiaravalloti et al. 2018; 
Navarro et al. 2020; Saouabe et al. 2020).

For PERSIANN data, CC values are between 0.4 and 
0.76, rho coefficient between 0.42 and 0.79, RBias around 
0.56, and RMSE between 4.5 and around 223 mm for daily, 
monthly, and yearly data. PERSIANN did not present good 
performance in terms of correlation at daily time step (r 
and rho < 0.5). The linear and Spearman correlations are 
similar for the daily, monthly, and yearly time steps, respec-
tively. These correlations are considered significant with 
a Spearman’s coefficient larger than 0.79 for yearly time 
step (Table 3). However, PERSIANN data showed a severe 
overestimation with RBias larger than 50% for each time 

Table 3  Summary of the results 
of the statistical parameters for 
the different time steps

Daily

CC rho RBias RMSE

Observed/sat. products OK IDW OK IDW OK IDW OK IDW

CHIRPS 0.55 0.56 0.38 0.39 −0.05 −0.07 3.29 3.29
GPM 0.42 0.43 0.56 0.57 −0.51 −0.52 3.62 3.64
PERSIANN 0.4 0.4 0.42 0.42 0.56 0.53 4.5 4.53
ERA5 0.69 0.7 0.62 0.62 0.12 0.12 2.87 2.85
Monthly

CC rho RBias RMSE
Observed/sat. products OK IDW OK IDW OK IDW OK IDW
CHIRPS 0.79 0.8 0.82 0.82 −0.05 −0.07 20.36 20.41
GPM 0.36 0.37 0.58 0.59 −0.51 −0.52 35.29 35.62
PERSIANN 0.64 0.64 0.7 0.7 0.56 0.53 32.89 32.83
ERA5 0.82 0.82 0.85 0.86 0.12 0.11 18.6 18.79
Yearly

CC rho RBias RMSE
Observed/sat. products OK IDW OK IDW OK IDW OK IDW
CHIRPS 0.78 0.78 0.69 0.69 −0.05 −0.07 75.26 80.23
GPM 0.39 0.41 0.48 0.51 −0.51 −0.52 212.13 218.52
PERSIANN 0.76 0.76 0.79 0.74 0.56 0.53 223.43 218.93
ERA5 0.87 0.86 0.81 0.81 0.12 0.11 72.20 72.75
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steps. This overestimation is confirmed by a high RMSE of 
223 mm/year.

For ERA5 data, CC values are between 0.70 and 0.87, 
the rho coefficient between 0.62 and 0.86, RBias around 
0.12, and RMSE between 2.85 and 73  mm for daily, 
monthly, and yearly data. ERA5 data show a very significant 
correlation for the two methods of interpolation with CC 
and rho coefficients, respectively, around 0.87 and 0.81 for 
yearly data. The RBias shows an overestimation, which 
have a value of approximately + 12%. The RMSE between 
ERA5 data and interpolated precipitation is 2.87  mm, 
larger than 18 mm, and 72.75 mm for, respectively, daily, 
monthly, and yearly data (Table 3). However, this study 
area is characterized by rare and intense precipitation events 
(Slimani et al. 2007). Indeed, precipitation is very sensitive 
variable especially spatially in Tunisia (Aouissi et al. 2018). 
So, this product is unable to reproduce precipitation spatially 
in this region.

The lowest CC was obtained for PERSIANN daily 
data, and for GPM monthly and yearly data. Based on the 
rho coefficient, performance of CHIRPS product was not 
satisfactory with around 0.38 for daily data with the ordinary 
kriging method. However, CHIRPS data show the best rho 

correlation at monthly time step. For the RBias, CHIRPS 
provided the best results with a slight underestimation of 5%, 
followed by ERA5 with an overestimation of 12% for each 
time step. In terms of RMSE, PERSIANN has the highest 
RMSE, followed by GPM, CHIRPS, and ERA5, for daily 
and yearly data. However, for monthly data, GPM shows 
the highest RMSE with a value equal to 36 mm/month. 
Both CHIRPS and ERA5 show a similar RMSE. Due to 
this similarity in performance, no product could be selected 
as superior based on the RMSE values alone. It shows that 
the CHIRPS and ERA5 results are significantly better than 
the other datasets, and PERSIANN is the least performer 
at different time steps, in terms of CC and rho for this case 
study.

This case study has been conducted to determine whether 
high resolution could be used to reliably estimate for rainfall. 
The twelve rain gauge stations in the study region had 
recorded rainfall between September 2000 and August 2018, 
so the study compared the recorded with three satellite-
based precipitation products and a reanalysis, in order to 
provide further insight into the capability of these products 
to assist in rainfall modeling. The analysis reveals that ERA5 

Fig. 6  Spatial distributions of the interpolated monthly precipitation with IDW method for the period of 2000–2018 in the Haffouz catchment
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appears best at temporal scale for the three time steps daily, 
monthly, and yearly, while CHIRPS products showed good 
performance in terms of RBias. All precipitation products 
seem to either underestimate or overestimate the rainfall, 
during this period.

Spatial analysis

The spatial distribution of precipitation is vital for under-
standing the precipitation spreading within the catchment. 
Figures 6, 7, 8, 9 illustrate the monthly precipitation distri-
bution for a grid with spatial resolution 2*2  km2, with 162 
pixels to represent the areal mean monthly precipitation 
over Haffouz catchment from 2000 to 2018. Both interpo-
lation methods of observed precipitation indicated similar 
spatial distribution with a difference of about 1 mm/month 
(Figs. 6 and 7). Results show that the spatial precipitation 
pattern for wet months (months of December to March) is 
correlated with the topography as rainfall is more abun-
dant in the northeast characterized by the highest altitude. 
It is also explained by the sub-humid climate in the north-
eastern part. Further, there is an overall decreasing gradi-
ent from northeast to southwest. The rainiest months are 

January, April, and December with a precipitation higher 
than 57 mm/month. The driest months are July and June.

The CHIRPS product has 27 pixels over the entire Haf-
fouz basin. Monthly CHIRPS precipitations for each pixel 
are similar as interpolated observed precipitation with a 
slight difference of 10 mm/month (Fig. 8). The rainfall 
follows an upstream–downstream gradient, in this context, 
(Kingumbi 1997) showed that precipitation in the Mer-
guellil watershed (with Haffouz as a sub-basin) follows a 
rainfall gradient of 20 mm per 100 m of altitude.

Precipitation is more abundant during January 
and February, respectively. In addition, it is noted 
that precipitation increases with altitude but does not 
reproduce the same spatial distribution patterns on the 
highest altitudes. Thus, an underestimation is noted in 
the northeast part. In this regard, several researchers in 
different regions of the world have tested the CHIRPS 
product under similar climatic conditions. This research 
showed that the performance of CHIRPS can differ from 
one region to another, while also showing its capability 
to be a tool for monitoring and assessing dry and wet 
conditions (Eltazarov et  al. 2021; Paredes-Trejo et  al. 
2017; Rivera et al. 2019).

Fig. 7  Spatial distributions of the interpolated monthly precipitation with OK method for the period of 2000–2018 in the Haffouz catchment
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PERSIANN has a higher spatial resolution with 40 pix-
els compared to CHIRPS. The spatial pattern going from 
the northeast to southwest of the basin is still represented 
but with lesser contrast. An overestimation is observed 
for all months with a maximum difference of 46 mm in 
September in the northern part of the catchment (Fig. 9). 
For the wet months, there is a strong overestimation in the 
downstream region and the south part ranging from 25 
to 40 mm depending on the month. During the summer 
months June to August, there is an overestimation over 
the entire basin with a maximum of 25 mm in August. 
The spatial distribution over the catchment was not repre-
sentative and indicated an overall overestimation. Similar 
studies using PERSIANN reported that its performance is 
rather poor over the regions with high elevation (de Brito 
et al. 2022; Singh et al. 2022; Suliman et al. 2020).

Conclusion

In this study, we compared and evaluated three satellite 
precipitation products and a reanalysis with a high spa-
tiotemporal resolution which are CHIRPS, PERSIANN, 

ERA5, and GPM. These products were assessed using 
observed data from 12 rain gauging stations located in 
semiarid region in central Tunisia for the period from Sep-
tember 2000 to August 2018. These products have been 
evaluated for temporal scale, at daily, monthly, and yearly 
scales and for spatial scale. Before the comparison of the 
satellite-based precipitation estimations, two methods of 
interpolation inverse distance weighting (IDW) and ordi-
nary kriging (OK) were used to calculate the ground-refer-
ence areal precipitation over the watershed. Both methods 
reproduced similar precipitations for Haffouz catchment 
based on validation with three observed rain gauges with 
different altitude locations. The abilities of the three dif-
ferent satellite precipitation products and a reanalysis to 
replicate the observed precipitations are very different. 
CHIRPS showed the most satisfactory results for all time 
steps and for both spatial scales, followed by PERSIANN 
at the monthly and yearly scales, and by GPM product at 
the daily and monthly scales. ERA5 showed a very good 
performance temporally, but in this case, it cannot be 
evaluated due to its low spatial resolution in the catch-
ment. GPM performed poorly with a high underestimation 
over the entire catchment at monthly time scale. Although 

Fig. 8  Spatial distributions of CHIRPS precipitation for the period of 2000–2018 in the Haffouz catchment
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some satellite products have a high spatial resolution, they 
cannot reproduce precipitation well, such as PERSIANN 
which showed a poorer spatial distribution compared 
to other products. But, others like ERA5 showed a bet-
ter performance even with two grids only over the entire 
watershed. Thus, the performance of precipitation repro-
duction is not necessarily related to the spatial resolution 
of the product. The performances of satellite precipitation 
products are affected by rain gauge network, topography, 
and the climate. It should be noted that arid and semiarid 
regions are characterized by short rainfall events that may 
impact the satellite precipitation products.

The obtained results may provide insights into the per-
formance of different satellite-based precipitation products 
in ungauged arid and semiarid areas. These products are 
of high importance for hydrological modeling and water 
resource management in these regions of the world.
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